分布式缓存

  • 缓存雪崩

    缓存雪崩,是指在某一个时间段,缓存集中过期失效。

    产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。

    小编在做电商项目的时候,一般是采取不同分类商品,缓存不同周期。在同一分类中的商品,加上一个随机因子。这样能尽可能分散缓存过期时间,而且,热门类目的商品缓存时间长一些,冷门类目的商品缓存时间短一些,也能节省缓存服务的资源。

    其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,那么那个时候数据库能顶住压力,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。

    缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间所有原本应该访问缓存的请求都 去查询数据库了,而对数据库 CPU 和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列 连锁反应,造成整个系统崩溃。一般有三种处理办法:

  1. 一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。
  2. 给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓 存。
  3. 为key设置不同的缓存失效时间。
  • 缓存穿透 缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在 缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。这样请 求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。 有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈 希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存 储系统的查询压力。另外也有一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数据不 存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。 通过这个直接设置的默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库。

  • 缓存预热 缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候, 先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!

  • 缓存更新 缓存更新除了缓存服务器自带的缓存失效策略之外(Redis 默认的有 6 中策略可供选择),我们还可以 根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: (1)定时去清理过期的缓存; (2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数 据并更新缓存。

  • 缓存降级 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然 需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开 关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的 (如加入购物车、结算)。

  • 缓存击穿

    缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。

    小编在做电商项目的时候,把这货就成为“爆款”。

    其实,大多数情况下这种爆款很难对数据库服务器造成压垮性的压力。达到这个级别的公司没有几家的。所以,务实主义的小编,对主打商品都是早早的做好了准备,让缓存永不过期。即便某些商品自己发酵成了爆款,也是直接设为永不过期就好了。

    大道至简,mutex key互斥锁真心用不上。